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Objective: Although many curative treatments are being applied in the clinic, a significant
number of patients with liver hepatocellular carcinoma (LIHC) suffer from drug resistance. The
tumour microenvironment (TME) has been found to be closely associated with resistance,
suggesting that identification of predictive biomarkers related to the TME for resistance in
LIHC will be very rewarding. However, there has been no study dedicated to identifying a TME-
related biomarker that has the potential to predict resistance in LIHC.

Methods: An integrated analysis was conducted based on data of patients with LIHC
suffering from drug resistance from the TCGA database and four GEO datasets.
Subsequently, we also validated the expression levels of the identified genes in paraffin-
embedded LIHC samples by immunohistochemistry.

Results: In this study, we developed a robust and acute TME-related signature consisted of
five immune-related genes (FABP6, CD4, PRF1, EREG and COLEC10) that could indepen-
dently predict both the RFS and OS of LIHC patients. Moreover, the TME-related signature
was significantly associated with the immune score, immune cytolytic activity (CYT), HLA,
interferon (IFN) response and tumour-infiltrating lymphocytes (TILs), and it might influence
tumour immunity mainly by affecting B cells, CD8" T cells and dendritic cells. Furthermore,
our analysis also indicated that the TME-related signature was correlated with the immu-
notherapy response and had an enormous potential to predict sorafenib resistance in LIHC.
Conclusion: Our findings demonstrated a TME-related signature which can independently
predict both the RFS and OS of LIHC patients, highlighting the predictive potential of the
signature for immunotherapy response and sorafenib resistance, potentially enabling more
precise and personalized sorafenib treatment in LIHC in the future.
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Introduction

As one of the most frequent causes of cancer deaths across the globe, liver
cancer, characterized by high mortality, recurrence, metastasis and poor prog-
nosis, is the only one of the top five deadliest cancers to have an annual
percentage increase in occurrence.’

Surgery, local destructive therapies, and liver transplantation are usually thought
to be potentially curative treatments for patients with early liver hepatocellular
carcinoma (LIHC). However, the recurrence of LIHC remains a major problem
after curative treatment, reaching an incidence of more than 70% at 5 years.?
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Tumor microenvironment (TME), broadly classified
into cellular and non-cellular components, has been
reported to have critically influence on liver cancer initia-
tion, progression, invasion, and metastasis,” as impor-
tantly, on responses to immunotherapy treatment.* Liver
is one of the three organs most susceptible to hypoxia and
Existing studies have found that hypoxia was potential
induction to the metastasis and poor prognosis of LIHC.?
As cellular components of TME, immune cells usually
play crucial roles and have been demonstrated to be valu-
able for diagnostic and prognostic assessment of tumors.’
Previous studies have reported that hypoxia can regulate
the status of tumor immune microenvironment, such as
promoting the recruitment of innate immune cells and
interfering with the differentiation and function of adaptive
immune cells.” Inflammatory monocytes, infiltration and
M2-polarisation of tumor associated macrophages (TAMs)
could induce the immunosuppression status of the TME in
liver cancer, and therapeutic blocking of the CCL2/CCR2
axis could reverse this status.® Moreover, TAMs were
proved to promote expansion of liver cancer stem cells
by producing interleukin 6 and signal via STAT3.’

There were many research have been reported that
individualized immune signature selected from immune-
related genes (IRGs) could accelerate prognostic estima-
tions for patients, such as non-small cell lung cancer'® and
papillary thyroid cancer.'' Previous study reported a small
amount of prognostic biomarkers for liver cancer consisted
of immune-related single gene, including CXCL10,"
NDRG1" and CXCLI2."* Moreover, Zhang et al have
reported the landscape of immune cells in hepatocellular
carcinoma.'’

For patients with advanced LIHC, sorafenib has shown
some survival benefit.'® Unfortunately, drug resistance is
evident in many patients.'"® Zhou et al reported that
tumour-associated neutrophils could induce sorafenib
resistance by recruiting macrophages and T-regulatory
cells.'” Increased expression of triggering receptor
expressed on myeloid cells-1 (TREM-1) in tumour-
associated macrophages (TAMs) led to anti-programmed
cell death ligand 1 (PD-L1) resistance in liver cancer.'®
Given these data, we can realize that there is a marked
correlation between TME and resistance in liver cancer,
suggesting that the identification of predictive biomarkers
related to TME for resistance in liver cancer will be very
rewarding. However, gaps still exist in the current research
regarding the prognostic significance and predictive poten-
tial related to the resistance of TME-related IRGs in

a comprehensive, genome-wide profiling study of liver
cancer.

Therefore, in this study, we developed a robust TME-
related (FABP6, CD4, PRF1, EREG and COLECI10) prog-
nostic signature that could independently predict both RFS
and OS of LIHC. The prognostic signature was signifi-
cantly associated with the immune score, immune cytoly-
tic activity (CYT), HLA, interferon (IFN) response and
tumour-infiltrating lymphocytes (TILs), and it might influ-
ence tumour immunity mainly by affecting B cells, CD8"
T cells and dendritic cells. Further analysis indicated that
our TME-related signature was correlated with the immu-
notherapy response in LIHC. Moreover, we also found that
the TME-related signature had the potential to predict
sorafenib resistance in LIHC. These findings provide
further insight into effective treatment strategies for
LIHC and opportunities for further experimental and clin-
ical validation. Moreover, the results from this study could
offer a foundation for subsequent, in-depth immune-
related work with great promise for the personalized treat-
ment of LIHC.

Materials and Methods
Patient Data

Gene expression data and the associated clinical character-
istics of the LIHC patients were downloaded from the
Cancer Genome Atlas (TCGA, http://cancergenome.nih.

gov/), including 370 LIHC samples with the corresponding
gene expression data and clinical information. Then, 12
patients were removed from our analysis due to their zero
overall survival (OS) or recurrence-free survival (RFS)
time. Finally, 358 patients with complete follow-up infor-
mation, including OS status and time and disease-free
status and time, were included in our training dataset.
Among them, 172 participants developed a recurrence,
and 186 participants did not.

Principal component analysis (PCA) was performed to
compare the expression differences of the genes between
tumour and normal samples using the Gene Expression
Profiling Interactive Analysis 2 (GEPIA 2) (http://gepia2.
cancer-pku.cn/#index) database. There were 50 normal

samples and 369 tumour samples included in the GEPIA
2 database, which overlapped with the LIHC samples
downloaded from the TCGA.

For wvalidation, gene expression data and associated
clinical characteristics of 242 patients with LIHC were
obtained from the publicly available GEO database
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(https://www.ncbi.nlm.nih.gov/geo/), which formed our
validation set. GSE14520 from the GEO database was
conducted by GPL571 (Affymetrix Human Genome
UI33A 2.0 Array) and GPL3921 (Affymetrix HT Human
Genome U133A Array), including 242 LIHC samples with
complete follow-up information (recurrence status and

RFS). Among them, 136 participants had a recurrence,
and 106 participants did not. We also downloaded three
drug resistance datasets from the GEO database
(GSE73571, GSE116118, GSE125180). The list of these
datasets is displayed in Table S1.

Tumour tissues were also collected from 55 LIHC patients
who underwent surgery at the First Affiliated Hospital of
China Medical University between 2007 and 2017. None of
the patients had received radiotherapy or chemotherapy
before surgery. The use of human tissues was approved by
the ethics committee of China Medical University.

Immune-Related Gene (IRG) Analysis in
the Training Set of LIHC

The overall design and flow diagram of this study is
presented in Figure 1. Here, we utilized estimation of
STromal and Immune cells in MAlignant tumours using
expression data (ESTIMATE), a method that could infer
the fraction of immune cells within the TME based on the
expression of immune genes.'® The list of immune genes
has been reported by Yoshihara et al.'” Based on the
ESTIMATE algorithm, we first calculated the immune
scores of our TCGA training set. Next, 358 LIHC cases
were divided into high- and low-score groups according to
the cut-off value of 421.22 as the median immune score.
Subsequently, we performed differential gene analysis of
60244 mRNAs using the package edgeR*® for compari-
sons based on immune scores. False discovery rate (FDR)
< 0.05 and a log?2 |fold change| > 1 were set as the cut-off
values. We downloaded a list of IRGs via the Immunology
Portal (ImmPort) database.
A protein-protein interaction (PPI) network of the differ-

Database and Analysis

entially expressed IRGs was constructed by the Search
Tool for the Retrieval of Interacting Genes (STRING)
Database (https://string-db.org) and subsequently visua-

lized by Cytoscape software. Common genes among the
DEGs and IRGs were selected for further analysis. The
Database for Annotation, Visualization and Integrated
Discovery (DAVID) database (https://david.ncifcrf.gov/)
was used to enrich for biological themes with GO terms

and with the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway maps. A P value <0.05 was set as the
cut-off criterion.

Regulatory Network Analysis of the IRGs

and Transcription Factors (TFs)
We obtained a total of 318 TFs from the Cistrome Cancer
database (http://cistrome.org/CistromeCancer/). Next, we

selected clinically relevant TFs that were significantly
associated with the RFS of CC using univariate Cox
regression analysis by the cut-off criterion of a P value
<0.001. Finally, we constructed a regulatory network of
the current IRGs and clinically relevant TFs.

Construction and Confirmation of

a Prognostic Signature

Differentially expressed IRGs were analysed by using Cox
regression analysis to identify a prognostic signature for
LIHC. The corresponding risk scores for the samples from
both the training and validation sets were calculated
according to the expression levels of the genes (expi)
and the coefficients of the multivariate Cox regression
analysis (bi). Subsequently, the patients were divided into
low- and high-risk groups according to the mean risk
score. The formula used was as follows:

Riskscore = Y expi * bi

i=1

Alteration Analysis of the Selected Genes

in the Prognostic Signature

Alterations of genes commonly exist in the progression of
tumours. Therefore, it is necessary to investigate the
alterations of our selected genes in LIHC. The cBioPortal
database (https://www.cbioportal.org/) can provide web

resources for the visualization of genetic changes. The
LIHC samples of the cBioPortal database we selected
overlap somewhat with the LIHC samples in the TCGA
database. To investigate the alterations of our selected
genes, we employed the cBioPortal database for further
analysis.

The Association Between Risk Score and

Clinicopathological Factors

The general clinical characteristics of 358 LIHC patients
in the TCGA training set are listed in Table 1. Here, we
used SPSS version 19.0 software to carry out univariate
and multivariate Cox regression analysis. A P value
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Figure | Overview of the analytic pipeline of this study.

<0.005 was set as the cut-off value. The risk score and
other clinicopathological factors were used as covariates.

The Relationship Analysis Between the

Risk Score and Tumour Immunity

The gene sets that represented different immune signatures
from several publications were involved in our analyses,
including HLA,?! TILs,”> CYT, and IFN response. The
full list of these genes is displayed in Table S2. Single-
sample gene-set enrichment analysis (ssGSEA)* was
employed to calculate these immune signature scores

using gene sets (Table S2). We analysed the correlation
between the risk score and those of the immune signatures
using the SPSS wversion 19.0 software package.
A threshold of P <0.05 (Spearman correlation test) indi-
cates the significance of the correlation.

The tumour immune estimation resource (TIMER, cis-
trome.shinyapps.io/timer) is a web dedicated to compre-
hensively evaluating the abundance of tumour-infiltrating
immune cells.** It includes 10,897 samples across 32
cancer types from TCGA to measure the abundance of
six subtypes of tumour-infiltrating immune cells, including
B cells, CD4" T cells, CD8" T cells, macrophages,
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Table | Clinical Pathological Parameters of Patients with Liver
Cancer in This Study

Clinical Characteristics TCGA (N=272)
n % Dead
Number

Age (year)

<6l 185 | 51.68 | 57

>61 173 | 4832 | 69
Sex

Male 119 | 33.24 | 51

Female 239 | 66.76 | 75
Ethnicity

Not Hispanic or Latino 324 | 9529 | 112

Hispanic or Latino 16 | 471 6
Pathological stage

I+l 250 | 744 | 67

I+ 1v 86 | 256 | 47
Grade

I+l 225 | 63.74 | 76

I+ 1v 128 | 36.26 | 46
Fibrosis

No 72 | 3495 | 29

Yes 134 | 65.05 | 34
Adjacent hepatic tissue
inflammation

No 116 | 51.1 36

Yes I | 489 | 30
Viral hepatitis

No 21 1321 | 6

Yes 138 | 86.79 | 63
Family history

No 200 | 64.52 | 67

Yes 110 | 3548 | 48
New event type

Extrahepatic recurrence 30 1744 | 16

Intrahepatic recurrence 76 | 44.19 | 28

Locoregional recurrence 58 33.72 | 31

New Primary Tumor 8 4.65 4

neutrophils, and dendritic cells. The LIHC samples down-
loaded from the TIMER database overlap somewhat with
the LIHC samples downloaded from the TCGA. Then, we
calculated the associations between the risk score and
immune cell infiltration.

The relationships between the risk score and immune
cell infiltration were validated using the CIBERSORT
algorithm.”> Gene expression datasets were prepared

using standard annotation files and the data were uploaded
to the CIBERSORT web portal (https://cibersort.stanford.
edu). Total B cells were calculated as the sum of naive and

memory B cells. Total CD4" T cells were calculated as the
sum of the CD4" naive T cells, CD4" memory resting
T cells and CD4" memory activated T cell fractions.
Total NK cells, total dendritic cells, and total mast cells
were calculated as the sum of the resting and activated NK
cells, resting and activated dendritic cells, and resting and
activated mast cells, respectively.

Immunohistochemical Analysis

We obtained 55 paired representative paraffin blocks
(2007-2017) of HCC and adjacent tissue samples after
reviewing the haematoxylin and eosin-stained slides.
Tissue cores were extracted from each donor block using
a 1.5 mm diameter puncture needle and arrayed into a new
paraffin recipient block made of 60 cores. Sections were
obtained from the re-prepared blocks, mounted on poly-
L-lysine-coated glass slides, and used for immunohisto-
chemical staining. After deparaffinization, the slides were
pre-treated by steaming in sodium citrate buffer at 121°C
for 5 min (pH 7.8 Tris-EDTA-citrate buffer). Then, endo-
genous peroxidase activity was blocked with 3% H,O,.
Then, the sections were incubated with the appropriate
antibody at the appropriate dilution, and DAB staining
solution was added. The sections were counterstained
with haematoxylin, dehydrated, and sealed.

Evaluation of Immunohistochemistry

Each stained slide was individually reviewed and scored by
two independent pathologists blinded to the experimental
conditions using a light microscope (magnification, x200;
selecting three fields/view). The intensity of immunoreactiv-
ity was scored as follows: zero for no staining, one for weak
staining, two for moderate staining, and three for strong
staining. The proportion of positive tumour cells was as
follows: 0 (no positive cells), 1 (<25% positive cells), 2
(26-50% positive cells), 3 (51-75% positive cells), and 4
(>75% positive cells). The score was obtained by calculating
the product of the intensity of the immunoreactivity and the
proportion of the positive tumour cells. A score >6 repre-
sents high expression; otherwise, it is low expression.

Statistical Analysis
The expression profiles of the mRNAs from TCGA and
GEO are shown as the raw data, then each mRNA was
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normalized by log2 transformation for further analysis. The
receiver operating characteristic (ROC) curves were plotted
based on the risk scores and the survival status or drug
resistance status of each patient to compare the predictive
accuracy of the gene signature. Kaplan-Meier (K-M) curves
were carried out to compare the survival and recurrence or
metastasis risk between high-risk and low-risk groups.
P values from the Log rank tests were calculated, and a P
value less than 0.05 was considered statistically significant.
Statistical analysis was performed by using GraphPad Prism
version 7.0 or SPSS version 19.0 software package. A two-
tailed P < 0.05 was considered statistically significant.

Results
Immune Scores are Significantly
Associated with RFS in Patients with

LIHC

We employed the ESTIMATE algorithm to quantify the
intratumoral immune content (immune score) of LIHC
patients in our TCGA training set. Based on the
ESTIMATE algorithm, the immune scores ranged from
—901.34 to 3200.17 (Table S3). The K-M curves illustrated
that patients in the low-score groups had significantly
shorter RFS than those in the high-score groups (log-
rank P=0.0035, Figure 2A). Subsequently, we plotted the
distribution of immune scores based on the pathological
stage of the LIHC cases, and the results showed that stage
I and stage II had higher immune scores compared with
stage III and stage IV (log-rank P=0.0254, Figure 2B).

|dentification of Differentially Expressed
IRGs

Based on the immune scores, we performed differential
gene analysis in the TCGA training set. A total of 1531
DEGs were obtained, which consisted of 1401 upregulated
mRNAs and 130 downregulated mRNAs. Of these 1531
genes, we extracted 439 genes that overlapped with the
genes in the list of IRGs downloaded from the ImmPort
database. These 439 common genes included 437 upregu-
lated and 2 downregulated genes (Figure 2C and D,
Table S4).

To better understand the interplay among these differ-
entially expressed IRGs, we constructed a PPI network.
The results indicated that CD3G, LCK, CXCL1 and SYK
were the remarkable nodes and could be seen as hub
genes, as they had higher degree values in this network
(Figure 2E). Subsequently, functional enrichment analysis

revealed that these genes were most enriched in several
GO terms related to cell-cell interactions. Specifically,
“immune response”, “plasma membrane” and “antigen
binding” were the most frequent biological terms asso-
ciated with cell-cell interactions among the biological pro-
cesses (BP), cellular components (CC), and molecular
functions (MF), respectively (Figure 2F-H). For the
KEGG pathways, cytokine-cytokine receptor interactions
were most often enriched for these differentially expressed
IRGs (Figure 2I).

TF Regulatory Network

To unveil potential molecular mechanisms corresponding
to our differentially expressed IRGs, we constructed a TF-
mediated network to reveal the regulatory mechanisms of
these genes. We analysed the expression of the 318 TFs
using univariate Cox regression analysis. Thus, 21 TFs
associated with the RFS of the LIHC patients were
obtained (Figure 2J, Table S5). Then, we constructed
a regulatory network based on these 21 TFs and our 439
differentially expressed IRGs. A correlation score greater
than 0.4 and a P value greater than 0.001 were set as the
cut-off values. The TF-based regulatory schematic dia-
gram acutely revealed that HDAC2, SFPQ, NCAPG,
SOX4, CBX3, JMID6, HSF2, SAP30, and CENPA were
featured prominently in this network (Figure 2K).

Construction of a Prognostic Signature
That Can Predict Both the RFS and OS of
LIHC

To explore candidate indicators for prognostication, we first
examined the expression files of 439 differentially expressed
IRGs by performing univariate Cox regression analysis. Thus,
18 genes associated with RFS were identified (Table S6).
A forest plot of hazard ratios (HR) indicated that most of
these genes were protective factors (Figure 3A). After that,
we further applied these 18 genes to multivariate Cox regres-
sion analysis to develop a prognostic signature for LIHC. As
a result, a prognostic signature consisting of five genes
(FABP6, CD4, PRF1, EREG and COLEC10) was constructed
to predict prognosis of LIHC patients using a risk score
method. Hence, the LIHC risk score system was built as
follows: risk score= (0.309 x expression value of FABP6) +
(—0.154 x expression value of CD4) + (—0.1834 x expression
value of PRF1) + (0.331 x expression value of EREG) +
(—0.172 x expression value of COLECI10). A total of 358
LIHC patients were dichotomized into high- and low-risk
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green dots represent differentially expressed genes and black dots represent no differentially expressed genes. (E) Protein-protein interaction network of differentially
expressed IRGs. (F-H) Top 10 most significant GO terms and (I) KEGG pathways. (J) Forest plot of hazard ratios showing the RFS-related TFs. (K) Regulatory network
constructed based on clinically relevant TFs and differentially expressed IRGs.
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Figure 3 Construction of a TME-related prognostic signature for RFS and OS of LIHC in the TCGA training set. (A) Forest plot of hazard ratios showing the |18 RFS-related
genes. (B) Recurrence rate in low- and high-risk score groups. (C) Principal components analysis (PCA) of the expression of the five genes between LIHC tumor and normal
samples. (D) K-M curves of RFS of low- and high-risk groups. (E) The distribution of risk scores, patient recurrence-free status and gene expression levels. (F) ROC curve
for the 5-year RFS prediction by the TME-related signature. (G) K-M curves of OS of low- and high-risk groups. (H) The distribution of risk scores, patient recurrence-free

status and gene expression levels.

groups according to the cut-off value of 1.012 as the median
value of the risk score. Chi-square analysis indicated that
a higher risk score was associated with tumour recurrence (P
= 0.0060, Figure 3B). Intriguingly, PCA suggested that the
expression of the five genes was significantly different
between the LIHC tumour samples and the LIHC normal
samples (Figure 3C). K-M curves revealed that patients in
the high-risk groups tended to have poorer clinical outcomes

(log-rank P<0.0001, Figure 3D). Furthermore, the AUC value
of 5-year RFS was 0.712, suggesting moderate potential for
the prognostic signature in DFS prediction of the LIHC
patients (Figure 3E). The distribution of gene risk scores,
disease-free status, and gene expression levels of 358 LIHC
patients are shown in Figure 3F.

In terms of OS, K-M curves illustrated that the
high-risk groups had a significantly shorter OS than
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the low-risk groups (log-rank P=0.0006, Figure 3G).
The distribution of gene risk scores, patient OS status
and gene expression levels in the TCGA training set is
shown in Figure 3H. The low-risk group was identified
to have significantly better clinical outcomes than the
high-risk group. Moreover, we also compared the pre-
dictive power for prognosis of some recognized fac-
tors, such as GLUT, LDHA, HIF, EPAS1, with our
signature. The results suggest that our signature is
a stronger predictor than recognized factors (GLUT,
LDHA, HIF and EPASI) for prognosis of LIHC

(Figure S1).
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The TME-Related Prognostic Signature is
Robust in Patients with LIHC

To validate the predictive power of the gene signature, we
applied the signature to our validation set (GSE14520). Then,
242 patients were divided into low- and high-risk groups
according to the cut-off value of 2.380 as the median value
of the risk score. As shown in Figure 4A, the K-M curves
displayed great utility in predicting RFS with a P value of
0.0472. The distribution of gene risk scores, disease-free
status, and gene expression levels of the 242 LIHC patients
are shown in Figure 4B. In terms of OS, the K-M curves
indicated that the high-risk groups had a significantly shorter
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Figure 4 Validation of the TME-related prognostic signature in the validation set (GSE[4520). (A) K-M curves of RFS of low- and high-risk groups. (B) The distribution of
risk scores, patient recurrence-free status and gene expression levels. (C) K-M curves of OS of low- and high-risk groups. (D) The distribution of risk scores, patient

recurrence-free status and gene expression levels.
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OS than the low-risk groups (log-rank P=0.0064, Figure 4C).
Moreover, the distribution of gene risk scores, patients’ over-
all status, and gene expression levels are shown in Figure 4D.

We also detected the expression levels of these five pro-
teins in paraffin-embedded liver cancer samples by immuno-
histochemistry. Representative immunohistochemistry images
are shown in Figure SA—E. Fifty-five patients were divided
into low- and high-risk groups according to the cut-off value of
0.207 as the median value of the risk score. As shown in
Figure 5F, the K-M curves displayed great utility in predicting
RFS with a P value of 0.0033. In terms of OS, the K-M curves
indicated that the high-risk groups had a significantly shorter
OS than the low-risk groups (log-rank P=0.0283, Figure 5G).

Overall, these results suggested that this TME-related
signature for predicting both RFS and OS of LIHC
patients was robust.

The Alterations of the Five Genes in
Patients with LIHC in the cBioPortal
Database

To comprehensively understand the molecular characteris-
tics of the five genes, we examined the genetic alterations of
these genes using the cBioPortal database. The results
showed that all queried genes were altered in 13.43% of
350 cases, which involved 3 (0.86%) cases of mutations, 1
(0.29%) case of a gene fusion, 40 (11.43%) cases of ampli-
fication and 3 (0.86%) cases of a deep deletion. Thus, we
found that amplification (11.43%) was the most commonly
occurring type of mutation among these alterations
(Table 2). The alteration heatmap of the five genes is dis-
played in Figure SH. There were 0.3% changes in FABP6,
1.1% changes in CD4, 1.4% changes in PRF1, 0.3% changes
in EREG and 11% changes in COLECI10. Specifically, the
FABP6 gene included 1 case of amplification. The CD4
gene had 2 cases of amplification, 1 case of a deep deletion
and 1 case of a gene fusion. The PRF1 gene had 2 cases of
amplification, 2 cases of missense mutations and 1 case of
a truncating mutation. The EREG gene had 1 case of a deep
deletion. The COLEC10 gene had 37 cases of amplification
and 1 case of a deep deletion.

The Five-Gene Signature is an
Independent Prognostic Factor in Patients
with LIHC

Next, univariate and multivariate Cox regression analyses
were carried out. In terms of RFS, the results indicated that
the risk score (HR = 2.051, 95% CI = 1.475-2.850; P <

0.001) and pathological stage (HR = 2.120, 95% CI =
1.516-2.963; P <0.001) were significantly associated
with the RFS of the LIHC patients and could be indepen-
dent RFS prognostic factors for the LIHC patients in the
TCGA training set (Figure 6A and B). For OS, both the
risk score (HR = 1.658, 95% CI = 1.131-2.431; P = 0.01)
and the pathological stage (HR = 2.330, 95% CI = 1.597—
3.399; P < 0.001) were independent adverse OS indicators
for LIHC patients (Figure 6C and D).

To further investigate the clinical potential of the risk score
model, stratified analysis based on these clinical characteristics
was implemented. The results indicated that the risk score
retained the ability to predict RFS within each subgroup of
gender, age and grade, family cancer history, fibrosis and
adjacent hepatic tissue inflammation (Figure S2). However,
as shown in Figure 6E, the TME-related prognostic signature
seemed more applicable to predict the RFS of LIHC patients in
subgroups of stage I and stage II, with locoregional recurrence
and with viral hepatitis. For OS, patients in the subgroup of
stage I1I and stage IV, grade I and grade 11, male, younger than
61 years old, with locoregional recurrence, with viral hepatitis,
without fibrosis, without adjacent hepatic tissue inflammation
and with a family cancer history could benefit more from
a prognosis developed by using this risk score system
(Figures 6F and S3).

The TME-Related Signature May Influence

Tumour Immunity Mainly by Affecting

B Cells, CD8+ T Cells and Dendritic Cells
Given that the TME-related signature consisted of IRGs,
we hypothesized that the TME-related signature could
be correlated with tumour immunity. To test this hypoth-
esis, we involved diverse immune signatures, including
the immune score, immune CYT, HLA expression, IFN
response and TIL infiltration. Strikingly, we found that
the risk score was highly correlated with these immune
signatures in LIHC (Figure 7A, Table S7). In particular,
TIL infiltration had the highest degree of correlation
with the risk score among these immune signatures
(Figure 7A, Table S7). We also employed principal
component analysis (PCA) to analyze the relationship
between these factors and the weights they occupy. PCA
identified that among CYT, HLA, IFN and TILs, IFN
was the two most variable clusters, suggesting that [FN
occupied dominated weights among these four factors

(Figure 7B). In addition to the risk score, we found that
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